Practice Midterm 2

Student ID : _____

Name : _____

Problem	Score
1	/♡
2	/♡
3	/♡
4	/♡
5	/♡
6	/♡
Total	/6♡

Decide if the following statements are *always true* or *sometimes false*. JUSTIFY YOUR ANSWER.

- a) Every orthogonal set is a linearly independent set.
- b) Two diagonalizable matrices A and B are similar if they have the same eigenvalues, counting multiplicities.
- c) If A^3 is diagonalizable, then A is diagonalizable as well.
- d) If A^3 is diagonalizable, then there exists diagonalizable B such that $A^3 = B^3$.
- e) Let A be a $n \times n$ matrix. If the sum of entries in a column is zero for each column, then 0 is an eigenvalue of A.
- f) Suppose $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are vectors in \mathbb{R}^n . If $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ is an orthonormal set, then it is a basis for \mathbb{R}^n .
- g) If A and B are $n \times n$ invertible matrices, then AB is similar to BA.

Define a linear transformation T from \mathbb{P}_2 to \mathbb{P}_2 as follows.

$$T(p(t)) = 3p(t) - tp'(t).$$

a) Let \mathcal{E} be the standard basis for \mathbb{P}_2 . Find the \mathcal{E} -matrix for T.

b) Is it possible to find a basis ${\mathcal B}$ for ${\mathbb P}_2$ such that

$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}?$$

Let $A \ensuremath{\,{\rm be}}$

$$\begin{bmatrix} 3 & -4 & -4 \\ 2 & 1 & -4 \\ -2 & 0 & 5 \end{bmatrix}$$

whose characteristic polynomial $\chi_A(\lambda)$ is $-(\lambda - 1)(\lambda - 3)(\lambda - 5)$.

a) Find 3 linearly independent eigenvectors and, using them, find a diagonal matrix D and an invertible matrix P such that

$$P^{-1}AP = D.$$

b) Find all possible *D*'s. For each *D*, find one corresponding invertible matrix *P* such that $P^{-1}AP = D$.

1) Let T be a linear transformation from V to W. For bases \mathcal{B} of V and \mathcal{C} of W, let the matrix for T relative to \mathcal{B} and \mathcal{C} be

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Which of the following matrices could be a matrix for T (possibly, choosing different \mathcal{B}' and C' from \mathcal{B} and \mathcal{C} ?

a)
$$\begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ e) $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$

2) Which of the following matrices are similar to

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}?$$

a)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$
 e)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

_

3) Which of the following sets are orthogonal?

Consider

$$\mathbf{u} = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}.$$

Note that they are orthogonal to each other and let W be the span of $\{\mathbf{u}, \mathbf{v}\}$.

a) Define a linear transformation T from \mathbb{R}^4 to \mathbb{R}^4 as the orthogonal projection

$$T(\mathbf{x}) = \operatorname{proj}_{W}(\mathbf{x}) = \frac{\mathbf{u} \cdot \mathbf{x}}{3}\mathbf{u} + \frac{\mathbf{v} \cdot \mathbf{x}}{3}\mathbf{v}.$$

Let's denote the \mathcal{E} -matrix of T by [T]. (\mathcal{E} is the standard basis for \mathbb{R}^4 .) Find eigenvalues of [T].

b) Is the matrix [T] diagonalizable?

Problem 6¹

Let W be a subspace of \mathbb{R}^n . Given an orthogonal basis $\mathcal{B} = {\mathbf{b}_1, \cdots, \mathbf{b}_m}$ for W, recall that the formula of the orthogonal projection of $v \in \mathbb{R}^n$ onto W is given by

$$\frac{\mathbf{b}_1 \cdot v}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 + \dots + \frac{\mathbf{b}_m \cdot v}{\mathbf{b}_m \cdot \mathbf{b}_m} \mathbf{b}_m.$$

Let's denote this by $\operatorname{proj}_{W,\mathcal{B}}(v)$.²

a) Show that $v - \text{proj}_{W, \mathcal{B}}(v)$ is orthogonal to $\text{proj}_{W, \mathcal{B}}(v)$. Also, prove that $v - \text{proj}_{W, \mathcal{B}}(v) \in W^{\perp}$.³

$$\frac{\mathbf{b}_1 \cdot v}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 + \dots + \frac{\mathbf{b}_m \cdot v}{\mathbf{b}_m \cdot \mathbf{b}_m} \mathbf{b}_m$$

²I intentionally put \mathcal{B} to emphasize that this is the projection using the basis \mathcal{B} .

¹This problem is designed to prove that the formula for the orthogonal projection,

is independent of the choice of an orthogonal basis $\{\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_m\}$ for W.

³Hint. Use the linearity property of an innder product \cdots and the definition of *orthogonality*. In order to prove $v - \text{proj}_{W,\mathcal{B}} \in W^{\perp}$, you only need to show that $v - \text{proj}_{W,\mathcal{B}}$ is orthogonal to $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_m$.

b) Let $C = {c_1, \dots, c_m}$ be another orthogonal basis for W.⁴ Prove that⁵

$$\operatorname{proj}_{W,\mathcal{B}}(v) - \operatorname{proj}_{W,\mathcal{C}}(v) \in W^{\perp}.$$

c) Assume that there is no nonzero vector v such that $v \in W$ and $v \in W^{\perp}$ at the same time, without a proof. Using this fact, prove that

 $\operatorname{proj}_{W,\mathcal{B}}(v) - \operatorname{proj}_{W,\mathcal{C}}(v) = 0$

Therefore,

$$\operatorname{proj}_{W,\mathcal{B}}(v) = \operatorname{proj}_{W,\mathcal{C}}(v).$$

So, we can conclude that the formula of the orthogonal projection does not depend on the choice of an orthogonal basis.

Remark. Why does $v \in W$ and $v \in W^{\perp}$ at the same time imply v = 0?

If then, $v \cdot v = 0$ because $v \in W$ and $v \in W^{\perp}$. However, $||v||^2 = 0$ implies v = 0.

⁴From a), we have $v - \text{proj}_{W,C} \in W^{\perp}$. ⁵Hint. W^{\perp} is a subspace of \mathbb{R}^n (you can use this fact without a proof) so that W^{\perp} is closed under addition and scalar multiplication.