Practice Midterm 2

Student ID :

Name :

Problem	Score
1	$/ \triangle$
2	$/ \triangle$
3	$/ \triangle$
4	$/ \triangle$
5	$/ \triangle$
6	$/ \triangle$
Total	$/ 6 \triangle$

Problem 1

Decide if the following statements are always true or sometimes false. JUSTIFY YOUR ANSWER.
a) Every orthogonal set is a linearly independent set.
b) Two diagonalizable matrices A and B are similar if they have the same eigenvalues, counting multiplicities.
c) If A^{3} is diagonalizable, then A is diagonalizable as well.
d) If A^{3} is diagonalizable, then there exists diagonalizable B such that $A^{3}=B^{3}$.
e) Let A be a $n \times n$ matrix. If the sum of entries in a column is zero for each column, then 0 is an eigenvalue of A.
f) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are vectors in \mathbb{R}^{n}. If $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ is an orthonormal set, then it is a basis for \mathbb{R}^{n}.
g) If A and B are $n \times n$ invertible matrices, then $A B$ is similar to $B A$.

Problem 2

Define a linear transformation T from \mathbb{P}_{2} to \mathbb{P}_{2} as follows.

$$
T(p(t))=3 p(t)-t p^{\prime}(t)
$$

a) Let \mathcal{E} be the standard basis for \mathbb{P}_{2}. Find the \mathcal{E}-matrix for T.
b) Is it possible to find a basis \mathcal{B} for \mathbb{P}_{2} such that

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ?
$$

Problem 3

Let A be

$$
\left[\begin{array}{ccc}
3 & -4 & -4 \\
2 & 1 & -4 \\
-2 & 0 & 5
\end{array}\right]
$$

whose characteristic polynomial $\chi_{A}(\lambda)$ is $-(\lambda-1)(\lambda-3)(\lambda-5)$.
a) Find 3 linearly independent eigenvectors and, using them, find a diagonal matrix D and an invertible matrix P such that

$$
P^{-1} A P=D
$$

b) Find all possible D 's. For each D, find one corresponding invertible matrix P such that $P^{-1} A P=D$.

Problem 4

1) Let T be a linear transformation from V to W. For bases \mathcal{B} of V and \mathcal{C} of W, let the matrix for T relative to \mathcal{B} and \mathcal{C} be

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Which of the following matrices could be a matrix for T (possibly, choosing different \mathcal{B}^{\prime} and \mathcal{C}^{\prime} from \mathcal{B} and \mathcal{C})?
a) $\left[\begin{array}{ccc}1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
e) $\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 0\end{array}\right]$
2) Which of the following matrices are similar to

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] ?
$$

a) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & -1 & 0 \\ -1 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 2\end{array}\right]$
e) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
3) Which of the following sets are orthogonal?
a) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}5 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 5\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 2 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]\right\}$
e) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 5 \\ 2\end{array}\right],\left[\begin{array}{c}6 \\ -1 \\ -11 \\ 6\end{array}\right]\right\}$

Problem 5

Consider

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right]
$$

Note that they are orthogonal to each other and let W be the span of $\{\mathbf{u}, \mathbf{v}\}$.
a) Define a linear transformation T from \mathbb{R}^{4} to \mathbb{R}^{4} as the orthogonal projection

$$
T(\mathbf{x})=\operatorname{proj}_{W}(\mathbf{x})=\frac{\mathbf{u} \cdot \mathbf{x}}{3} \mathbf{u}+\frac{\mathbf{v} \cdot \mathbf{x}}{3} \mathbf{v}
$$

Let's denote the \mathcal{E}-matrix of T by $[T]$. (\mathcal{E} is the standard basis for \mathbb{R}^{4}.) Find eigenvalues of $[T]$.
b) Is the matrix $[T]$ diagonalizable?

Problem 6^{1}

Let W be a subspace of \mathbb{R}^{n}. Given an orthogonal basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{m}\right\}$ for W, recall that the formula of the orthogonal projection of $v \in \mathbb{R}^{n}$ onto W is given by

$$
\frac{\mathbf{b}_{1} \cdot v}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}+\cdots+\frac{\mathbf{b}_{m} \cdot v}{\mathbf{b}_{m} \cdot \mathbf{b}_{m}} \mathbf{b}_{m} .
$$

Let's denote this by $\operatorname{proj}_{W, \mathcal{B}}(v) .{ }^{2}$
a) Show that $v-\operatorname{proj}_{W, \mathcal{B}}(v)$ is orthogonal to $\operatorname{proj}_{W, \mathcal{B}}(v)$. Also, prove that $v-\operatorname{proj}_{W, \mathcal{B}}(v) \in W^{\perp}$. ${ }^{3}$

[^0]b) Let $\mathcal{C}=\left\{\mathbf{c}_{1}, \cdots, \mathbf{c}_{m}\right\}$ be another orthogonal basis for $W .{ }^{4}$ Prove that ${ }^{5}$
$$
\operatorname{proj}_{W, \mathcal{B}}(v)-\operatorname{proj}_{W, \mathcal{C}}(v) \in W^{\perp} .
$$
c) Assume that there is no nonzero vector v such that $v \in W$ and $v \in W^{\perp}$ at the same time, without a proof. Using this fact, prove that
$$
\operatorname{proj}_{W, \mathcal{B}}(v)-\operatorname{proj}_{W, \mathcal{C}}(v)=0
$$

Therefore,

$$
\operatorname{proj}_{W, \mathcal{B}}(v)=\operatorname{proj}_{W, \mathcal{C}}(v) .
$$

So, we can conclude that the formula of the orthogonal projection does not depend on the choice of an orthogonal basis.

Remark. Why does $v \in W$ and $v \in W^{\perp}$ at the same time imply $v=0$?
If then, $v \cdot v=0$ because $v \in W$ and $v \in W^{\perp}$. However, $\|v\|^{2}=0$ implies $v=0$.

[^1]
[^0]: ${ }^{1}$ This problem is designed to prove that the formula for the orthogonal projection,

 $$
 \frac{\mathbf{b}_{1} \cdot v}{\mathbf{b}_{1} \cdot \mathbf{b}_{1}} \mathbf{b}_{1}+\cdots+\frac{\mathbf{b}_{m} \cdot v}{\mathbf{b}_{m} \cdot \mathbf{b}_{m}} \mathbf{b}_{m},
 $$

 is independent of the choice of an orthogonal basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{m}\right\}$ for W.
 ${ }_{3}^{2}$ intentionally put \mathcal{B} to emphasize that this is the projection using the basis \mathcal{B}.
 ${ }^{3}$ Hint. Use the linearity property of an innder product \cdots and the definition of orthogonality. In order to prove $v-\operatorname{proj}_{W, \mathcal{B}} \in W^{\perp}$, you only need to show that $v-\operatorname{proj}_{W, \mathcal{B}}$ is orthogonal to $\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{m}$.

[^1]: ${ }^{4}$ From a), we have $v-\operatorname{proj}_{W, \mathcal{C}} \in W^{\perp}$.
 ${ }^{5}$ Hint. W^{\perp} is a subspace of \mathbb{R}^{n} (you can use this fact without a proof) so that W^{\perp} is closed under addition and scalar multiplication.

